
CAN in Simulation

Digital Module

Copyright 2024 Detlef Mahr
Rev. 1.2

CiS

- 1 -

Digital Module

The digital module serves as an output device designed to control LEDs, relays,
actuators, or various other digital components.
Supporting a maximum of 24 output lines, each with the capacity to source or sink up

to 50 mA, the system ensures compliance as long as the total current does not surpass
350 mA or the total power dissipation remains below 200 mW.
The output drivers offer flexibility and can be configured as either push-pull or open-

drain, providing adaptability to different circuit requirements.

CAN Message

The data byte consists of binary values (0 or 1) and determines whether the output is
driven low (Bit 1 = 1, data value = 2) or high (Bit 0 = 1, data value = 1).

Data Byte

This is how the Configuration Tool views a Digital Module (more on page 10):

The CAN-ID is displayed as 728 (hexadecimal), and the node ID is identified as 4.
You can change these values using the spin buttons for the CAN-ID or by editing the

node ID. Clicking the SET button afterward will overwrite the corresponding value in
the module.
The Find button searches for any attached digital modules, which is useful when the

modules are changed.
There are three parameters available that can be altered upon request, which are

described in the next paragraph.

CAN ID node ID data type service
code

message
code

data byte
0

data byte
1

data byte
2

data byte
3

730h node 0Bh item num data 0 0 0

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

- - - - - - low high

- 2 -

Available Parameters

Parameter Setting

To modify the parameters of a module, the Module Configuration Service (MCS) is
utilized. The MCS is assigned a unique CAN-ID of 7D0h (equivalent to decimal value
2000):

The parameter ID (pid) is used to identify which specific parameter needs to be
modified. Data byte 0 contains the value of the parameter and data byte 1 specifies the
affected output port.

Driver Mode The driver mode can be set to push-pull or open drain. The push-pull
output is capable of driving two output levels. It can either pull current
to ground (sink current from the load) or push current from the power
supply voltage (source current to the load).
In an open-drain configuration, the output is limited to driving to

ground, with the alternative state being high impedance. This feature
allows a connection of outputs to form a logical OR network.

Safe States The save states command allows the durable preservation of current
port states in EEPROM. Upon the subsequent power-up event, this
stored configuration is retrieved, reinstalling the port states to their
previous settings.

CAN ID node ID data type service
code

message
code

data byte
0

data byte
1

data byte
2

data byte
3

7D0h node 0Ah 0Dh pid x y 0 0

Offset The Digital module is capable of handling up to 24 output lines, each
of which is assigned a unique ID.
Starting with the offset value, the 24 lines are given consecutive ID

values, which will be included in the CAN message sent by the board.
Since the ID values are 1 byte wide, up to 256 different output lines

can be distinguished under a given Node-ID.

node ID: CAN node ID (node)
data type: UCHAR (0Ah, 10d)
service code: MCS (0D)
message code: Parameter index (pid)
message data: Parameter value (x, data byte 0)

Affected port pin (y, data byte 1) or 0

- 3 -

Parameters IDs

Upon completion of the parameter modification request, the response message will
have a message code of 0 (zero) if the operation was successful. However, if the
requested parameter is out of the valid range or the parameter ID is invalid, the
response message will contain a message code of -6.

CAN-ID Setting

The CAN-ID range for Digital board messages is 728h..72Fh (decimal 1832..1839).
To change the CAN-ID of the Digital board, the CAN Identifier Setting Service (CSS) can

be used. The message code (parameter ID) should be set to 0.

Upon completion of the CAN Identifier Setting request, the response message will have
a message code of 0 (zero) if the operation was successful, or -6 if the ID is out of the
valid range.

CAN ID node ID data type service
code

message
code

data byte
0

data byte
1

data byte
2

data byte
3

7D0h node 0Ch 0Eh 0 0 0 xh xl

node ID: CAN node ID (node)
data type: SHORT (0Ch, 12d)
service code: CSS (0Eh, 14d)
message code: 0
message data: New CAN ID high byte (xh, data byte 2)

New CAN ID low byte (xl, data byte 3)

index parameter value(s)

1 offset 1 … 255
6 driver mode 0 = push-pull, 1 = open drain
7 save states none, initiates a save command

- 4 -

Node-ID Setting

To change the Node-ID of the Digital board, the Node ID Setting Service (NIS) can be
used. Node-ID values are in the range of 1 to 255.

Upon completion of the Node Identifier Setting request, the response message will
have a message code of 0 (zero) if the operation was successful.

State Transmission

The status of a digital board‘s parameters can be obtained through the State
Transmission Service (STS). With 24 distinct output lines, the individual driver modes
or the output states are efficiently packed into 3 bytes (24 bits) for ease of transmission.

Upon completion of the State Transmission request, the response message will return
the queried status bitwise packed across data bytes 0 to 3 with the highest bit first (most
significant bit in data byte 0).

CAN ID node ID data type service
code

message
code

data byte
0

data byte
1

data byte
2

data byte
3

7D0h node 0 0Bh x 0 0 0 0

node ID: CAN node ID (node)
data type: NODATA (00h, 0d)
service code: NIS (0Bh, 11d)
message code: New node ID (1 ≤ X ≤ 255)
message data: 0

CAN ID node ID data type service
code

message
code

data byte
0

data byte
1

data byte
2

data byte
3

7D0h node 0 07h 0 0 0 0 0

node ID: CAN node ID (node)
data type: NODATA (00h, 0d)
service code: STS (07h, 7d)
message code: 0
message data: 0

- 5 -

Board Layout

The 120 ��jumper places a termination resistor between the CAN high and CAN low
line.

Wiring Examples

Power
(USB Micro)

GND
CAN high

+5V
CAN low

+5V
Outputs 1 .. 8
GND
Outputs 9 .. 16
GND
Outputs 17 .. 24

+5V
1
2
3
4
5
6

249

GND GND GND GND

120 �
Jumper

Set output low to
illuminate LED

Set output high to
illuminate LED

- 6 -

Axis And Ohs (AAO) Scripting Example

A practical script can be set up as either a „Global Automated Script“ or an „Aircraft
Automated Script“ in AAO, with a 200ms delay.
This example uses three red and three green LEDs as indicators for the landing gear

status. The red LEDs illuminate while the gear is in motion, and the green LEDs light up
when the gear is in the fully extended position. Output ports 1 to 3 control the red LEDs,
while ports 4 to 6 are used for the green LEDs.
Assuming the digital output board has a node ID of 5 and responds to CAN-ID 0x728,

there are two CAN output commands for controlling the outputs. These commands
drive the output either low (to turn the LED on) or high (to turn the LED off):

 LED on: (CANMSG:1|0728|050B0x0002000000)
 LED off: (CANMSG:1|0728|050B0x0001000000)

Here, x represents the corresponding output port number.

The LEDs are connected as illustrated in the wiring example above.

script stack

Fetch the variable for the nose gear position onto the stack:

(A:GEAR·LEFT·POSITION,·Percent·Over·100)
-

n₁

Duplicate it twice, d d, so that we have three numbers on the stack:

(A:GEAR·LEFT·POSITION,·Percent·Over·100)·d·d

n₁
-

n₁ n₁ n₁

Compare the top of the stack with 0 (the gear UP position), leaving a boolean:

(A:GEAR·LEFT·POSITION,·Percent·Over·100)·d·d·0·!=

n₁ n₁
-

n₁ n₂

Fetch the second-to-last item and compare it to 1 (the gear DOWN position) leaving
another boolean:

(A:GEAR·LEFT·POSITION,·Percent·Over·100)·d·d·0·!=·r·1·!=

n₁ n₂
-

n₁ n₂ n₃

Perform a logical AND operation and push the result onto the stack, the result will be
true if the gear position is neither UP nor DOWN.

(A:GEAR·LEFT·POSITION,·Percent·Over·100)·d·d·0·!=·r·1·!=·and

n₁ n₂ n₃
-

n₁ n₄

- 7 -

Axis And Ohs (AAO) Scripting Example (continued)

A local variable (L:center) is used to keep track of the state (moving or stable end
position)
A value of 1 indicates that the gear is in motion, while a value of 0 means the gear is in

a stable position (either UP or DOWN).

The if clause (gear is moving):

script stack

Check if we are transitioning from a stable end position (local variabel is 0), then
switch red LED on:

if{(L:center)·0·==·if{(CANMSG:1|0728|050B020001000000)
n₁ n₄

-

Set local variable to 1 (gear is moving) and pop unused item from stack:

if{(L:center)·0·==·if{(CANMSG:1|0728|050B020001000000)
·1·(>L:left)·p

n₁
-

Switch the green LED off:

if{(L:center)·0·==·if{(CANMSG:1|0728|050B020001000000)
·1·(>L:center)·p·(CANMSG:1|0728|050B050002000000)}

-

However, if the local variable has already been set to 1, then just discard the unused
item from the stack:

if{(L:center)·0·==·if{(CANMSG:1|0728|050B020001000000)
·1·(>L:center)·p·(CANMSG:1|0728|050B050002000000)}·els{p}}

-

- 8 -

Axis And Ohs (AAO) Scripting Example (continued)

The else clause (gear is UP or DOWN):

Thus, a complete script for the landing gear is as follows:

(A:GEAR·CENTER·POSITION,·Percent·Over·100)·d·d·0·!=·r·1·!=·and
if{(L:center)·0·==·if{(CANMSG:1|0728|050B020001000000)·
1·(>L:center)·p·(CANMSG:1|0728|050B050002000000)}·els{p}}
els{(L:center)·0·>·if{(CANMSG:1|0728|050B020002000000)·
0·(>L:center)·1·==·if{(CANMSG:1|0728|050B050001000000)}}}

(A:GEAR·LEFT·POSITION,·Percent·Over·100)·d·d·0·!=·r·1·!=·and
if{(L:left)·0·==·if{(CANMSG:1|0728|050B010001000000)·
1·(>L:left)·p·(CANMSG:1|0728|050B040002000000)}·els{p}}
els{(L:left)·0·>·if{(CANMSG:1|0728|050B010002000000)·
0·(>L:left)·1·==·if{(CANMSG:1|0728|050B040001000000)}}}

(A:GEAR·RIGHT·POSITION,·Percent·Over·100)·d·d·0·!=·r·1·!=·and
if{(L:right)·0·==·if{(CANMSG:1|0728|050B030001000000)·
1·(>L:right)·p·(CANMSG:1|0728|050B060002000000)}·els{p}}
els{(L:right)·0·>·if{(CANMSG:1|0728|050B030002000000)·
0·(>L:right)·1·==·if{(CANMSG:1|0728|050B060001000000)}}}

script stack

Check if we are transitioning from moving to a stable position (local variabel is 1), then
switch red LED off:

els{(L:center)·0·>·if{(CANMSG:1|0728|050B020002000000)

n₁
-

Set local variable to 0 (gear is stable now):

els{(L:center)·0·>·if{(CANMSG:1|0728|050B020002000000)
·0·(>L:center)

n₁
-

If gear is now in DOWN position, then switch the green LED on. If the position is
already stable, remove the unused value from the stack.:

if{(L:center)·0·==·if{(CANMSG:1|0728|050B020001000000)
·0·(>L:center)·1·==·if{(CANMSG:1|0728|050B050001000000)}}

els{p}}

n₁
-

The Configuration Tool

The configuration tool features a "Digital" panel on the right side, which appears as
follows:

When you open this panel for the first time, it automatically searches for a Digital
Output Board on the CAN bus. If a board is found, its Node-ID, CAN-ID, and Offset
parameter are displayed. Subsequently, clicking the button initiates a new search.
The Node-ID and Offset parameters can be adjusted by editing the numbers in their

respective fields. Pressing the button will immediately update these parameters
in the module. The CAN-ID can be adjusted using the spin buttons.
In the ‚Status‘ field, the button retrieves the current output states from the

board and displays them in the ‚Digital Output‘ field. A blue number indicates an output
configured as push-pull, whereas a red number signifies an open-drain output. A white
background indicates that the output is in a "passive" state, meaning it is at a high level
or in high impedance. A green background signals that the output is active or at a low
level.
You can toggle the output between high and low by clicking the corresponding button.

This action sends a CAN message to the board to update the real output state. The states
can be permanently saved to the board by using the button in the 'Status' field.
To change the output's driver mode, select the desired output in the ‚OC Output‘ field

using the spin control. Then press to configure it as an open-drain output or
to switch it to push-pull mode.
You can monitor all CAN bus activity in the left window.

SET

SET CLR

Fetch

Save

Find

- 9 -

- 10 -

Board Dimensions [mm]

4 x 3,2 Ø

34 40

34

40

	CiS Digital Module
	cis_digout_module

